Asymptotic solution to convolution integral equations on large and small intervals
نویسندگان
چکیده
منابع مشابه
existence and approximate $l^{p}$ and continuous solution of nonlinear integral equations of the hammerstein and volterra types
بسیاری از پدیده ها در جهان ما اساساً غیرخطی هستند، و توسط معادلات غیرخطی بیان شده اند. از آنجا که ظهور کامپیوترهای رقمی با عملکرد بالا، حل مسایل خطی را آسان تر می کند. با این حال، به طور کلی به دست آوردن جوابهای دقیق از مسایل غیرخطی دشوار است. روش عددی، به طور کلی محاسبه پیچیده مسایل غیرخطی را اداره می کند. با این حال، دادن نقاط به یک منحنی و به دست آوردن منحنی کامل که اغلب پرهزینه و ...
15 صفحه اولConvolution spline approximations of Volterra integral equations
We derive a new “convolution spline” approximation method for convolution Volterra integral equations. This shares some properties of convolution quadrature, but instead of being based on an underlying ODE solver is explicitly constructed in terms of basis functions which have compact support. At time step tn = nh > 0, the solution is approximated in a “backward time” manner in terms of basis f...
متن کاملNumerical solution of Fredholm integral-differential equations on unbounded domain
In this study, a new and efficient approach is presented for numerical solution of Fredholm integro-differential equations (FIDEs) of the second kind on unbounded domain with degenerate kernel based on operational matrices with respect to generalized Laguerre polynomials(GLPs). Properties of these polynomials and operational matrices of integration, differentiation are introduced and are ultili...
متن کاملIntegral equations, large and small forcing functions: Periodicity
The defining property of an integral equation with resolvent R(t, s) is the relation between a(t) and ∫ t 0 R(t, s)a(s)ds for functions a(t) in a given vector space. We study the behavior of a solution of an integral equation x(t) = a1(t) + a2(t) − ∫ t 0 C(t, s)x(s)ds when a1(t) is periodic, C(t+ T, s+ T ) = C(t, s), while a2(t) is typified by (t+ 1) β with 0 < β < 1. There is a resolvent, R(t,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences
سال: 2021
ISSN: 1364-5021,1471-2946
DOI: 10.1098/rspa.2021.0025